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The dynamical problem of X-ray Bragg diffraction from a thick (semi-infinite) crystal deformed by a uniform 
strain gradient (USG) is treated on the basis of the Green-Riemann function formalism. The rigorous solu- 
tion of the problem is formulated by means of the Huygens-Fresnel principle. The exact Green functions are 
obtained in the form of the Laplace integrals suitable in physical applications. The quasi-classical and the 
Born (kinematical) asymptotic expansions of the Green functions are constructed as functions of the effective 
USG parameter B. Special attention is paid to the analysis of the wave-field propagation in a crystal with 
USG. The spatial harmonics Re(q) of the diffracted Green function, when Re(qB) < 0, as is shown, propagate 
within the proper 'waveguides', while the ones with Re(qB) > 0 are damped exponentially in the bulk of the 
crystal. The Taupin problem of the Bragg dynamical diffraction of the X-ray incident plane wave from a 
thick crystal, the lattice spacing being a linear function of the coordinate z (along the inward normal to the 
entrance surface) only is solved exactly in analytical form. In the latter case the waveguide nature of the 
propagation of the spatial harmonics inside such a crystal, provided that Re(qB) < 0, is clearly revealed. 

1. Introduction 

Recently (Petrashen', 1973; Chukhovskii, 1974; Pet- 
rashen' & Chukhovskii, 1975, 1976; Chukhovskii & 
Petrashen', 1977; see also Katagawa & Kato, 1974), 
the dynamical theory of X-ray Laue diffraction by a 
crystal with a uniform strain gradient (USG) has been 
developed on the basis of the Green-Riemann function 
method. It is of special interest to apply a similar 
approach to the study of X-ray propagation inside such 
a crystal in the case of Bragg diffraction. 

However, for Bragg diffraction there is an additional 
factor in comparison with the Laue case, namely the X- 
ray extinction phenomenon: the total internal reflection 
of the wave field in the regions of a crystal where the 
exact Bragg condition is fulfilled. This seriously 
complicates the mathematical treatment of the problem 
under consideration. 

Up to now, there have been no systematic investiga- 
tions of X-ray Bragg diffraction by imperfect crystals 
and, in particular, by crystals with USG. Only a few 
works are known (Bonse, 1962, 1964; Bonse, Kappler 
& Shill, 1964; Taupin, 1964; Bonse & Graeff, 1973; 
Baturin, Kovarchuk, Kov'ev & Palapis 1977; 
Fukuhara & Takano, 1977) in spite of the importance 
of the topic for studies of the real structure of the 
crystal regions adjacent to the entrance surface. 

Bonse (1964) elaborated the original generalization 
of the Penning & Polder (1961) theory. He took into 
account, in principle, the X-ray extinction pheno- 
menon and calculated the energy flow trajectories in a 
homogeneously bent crystal. Nevertheless, the initial 
assumptions of the Bonse theory are not quite clear and 
the mathematical treatment of the problem is very com- 
plicated. Petrashen' (1973) first constructed the exact 
Riemann function in the case of X-ray Bragg diffrac- 
tion from a crystal deformed by USG [when 
t92(hu)/~xi tgxj = const, where u(r) is the elastic dis- 
placement field and h is the diffraction vector]. Un- 
fortunately the Riemann function obtained is an infinite 
series of confluent hypergeometric functions and all the 
terms of the series have the same order in powers of the 
effective USG parameter 4B = 6q2(hu) /6Os00s  h [here- 
after, (s o Osh) is the oblique-angled coordinate system 
with axes Os o, Os h along the directions K 0 of the 
incident beam and K h of the diffracted beam in the X- 
ray scattering plane, respectively]. 

Thus, the principal point of the solution of the 
problem in question is to find the Green-Riemann func- 
tions suitable for a physical analysis. On the other 
hand, the main difficulty of the mathematical treat- 
ment is caused by the extinction phenomenon men- 
tioned above, since, when the total reflection of the X- 
rays occurs, the imaginary part of the eikonal function 
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becomes of the same order as or greater than the real 
one and, therefore, the quasi-classical description of 
wave-field propagation fails, as does the eikonal theory. 

In the present paper the general properties of Bragg 
dynamical diffraction of X-rays from a thick crystal 
with USG are discussed. On the basis of the modified 
Riemann method the solution of the Takagi equations 
is formulated in the integral form of the Huygens- 
Fresnel principle and the Green-Riemann functions are 
introduced (§§ 2, 3). The Laplace transforms of the 
exact Green-Riemann functions are found. They 
enable one to analyse the physical behaviour of the 
wave field inside the crystal with USG. It is interesting 
that the spatial harmonies Re(q) of the wave packet 
corresponding to the Green-Riemann function and 
describing the wave-field distribution in a crystal from a 
point source of X-rays propagate within 'waveguides' 
for Re(qB) < 0, undergoing multiple total reflection, 
whereas the harmonics Re(qB) > 0 decrease exponen- 
tially in the bulk of the crystal. This should also be true 
for the more complicated distortion fields. 

In § 4 the quasi-classical and the Born (kinematical) 
asymptotes of the Green-Riemann functions are 
constructed. 

The exact analytical solution of the Taupin (1964) 
problem is obtained. It concerns the Bragg diffraction 
of an X-ray plane wave incident on a thick crystal 
deformed so that the lattice spacing is a linear function 
of the crystal depth only (§ 5). In this case the wave- 
guide nature of the propagation of each spatial 
harmonic Re(q) with Re(qB) < 0 is clearly revealed. 

2. Formulation of problem. The diffracted wave field 
on the entrance surface of a semi-infinite crystal 

Inside a crystal oriented, as whole, near the single 
regular Bragg position with the diffracted vector h, the 
X-ray wave field is formed of a coherent superposition 
of the transmitted wave g0 exp (iK0r) and the diffracted 
wave gh exp ( i K  h r) and is governed by the Takagi set 
of equations (see, e.g. ,  Petrashen', 1973; Chukhovskii 
& Petrashen', 1977): 

f 
c°g° K~f°  go + O'-h exp(ihu) gh = 0 

i COSo + 2),0 (2.1) 

C~g h 
i + K Z ° - - a g  h + o h exp(--ihu) g 0 = 0, 

21 yh I 
( K =  IK01 ). 

The relationship between the oblique-angled coordi- 
nate system (soOsn) and the Cartesian one ( x O z ) ,  with 
the x axis along the crystal surface, is given by 

{ X s aoSo -- ah S h 
s o - s h ao, h = (1 --',O.h2 )v2/,ro.h, (2.2) 

where Yo and Yh are the direction cosines, )'0. h = COS 
L (So.n, n) and n is the inward normal to the entrance 
surface of the crystal (Fig. 1); a = ( K  2 - K 2 ) / K  2 is the 
angular deviation from the exact Bragg position. The 
complex dynamical coefficients are equal to 

C ~ K z  h rc 1 Z-h  1/2 

a-h  2y 0 A Ifll 1/2 

on= 21Yh I - - A  ( l + i k )  

(2.3) 

(for details of the form of the equations and the 
notations used to see, e.g. ,  Petrashen' & Chukhovskii, 
1975; we note that k < 0 by definition and usually 
Ikl ,~ 1). 

The mixed boundary conditions of the problem 
under consideration in the approximation of a semi- 
infinite crystal are defined as follows 

~ 0 ( x , z ) l z _ - 0  = = = g0°"C)(x), ~,h'(X,Z)I~ ~ 0. (2.4) 

Here g(01nC)(x) is the amplitude of the X-ray incident 
wave on the entrance surface. The second condition of 
(2.4) for the diffracted wave amplitude is sufficient in 
the case of a thick absorbing crystal, "when/~0 L >> 1, 
where L is the crystal thickness, a0 is the X-ray absorp- 
tion coefficient. This is usually realized in an X-ray 
Bragg diffraction experiment. 

The projection of the displacement field u(r) on the 
diffraction vector h for a crystal with USG is the 
quadratic function in coordinates, 

hu(r) -- 2 ( A s  2 + 2 B s o s  h + Cs2). (2.5) 

For simplicity, in (2.5) terms linear in the coordinates 
are omitted, since their inclusion only leads to 
renormalization of the Bragg angle. 

According to the modified Riemann method 
(Petrashen', 1973) the solution of the boundary-value 

Sh 

I 9 • A 

N ( S o x , S ~  ) 

n 

P(so,Sh) 

z 

Fig. 1. The X-ray Bragg diffraction geometry and the coordinates 
used. 

) 
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problem, (2.1), (2.4), (2.5), for the diffracted wave on 
the entrance surface can be written in the form 

Eh(So, Sh)[so=Sh 

= ieh ~ ds~Eo(s~,,s~)exp[-4iBS'h ~ (2.6) 
OPt 

+ 4iBSh(S~h -- Sh)] t~B(S'h - -  S h "  ~ Sth - -  S h )  , 

where 

Eh(So, Sh) = ~h(So, Sh)exp -- i g  Xo So + 2lyhl h] 

+ 2iAs~o] 
(2.6*) 

+ X0 - - a  
E°(s°' sh) = ~'°(s°'sh) exp [-- iK (~7° 2l)'hl Sh) 

-- 2iCs 2 ]. 

Here the Riemann function ~ " RB(~ 0, ~,) is determined 
from the hyperbolic equation (~[ = s~ - s 0, ~ = s~ - 

Sh; Co = - -  ~'o, ~h = - -  ~'~) 

02-~B 4iBm, h c~kB + (e h e_ h -- 4iB) k B = 0 (2.7) 

with the following mixed boundary conditions: 
(i) on the characteristic ~ = 0 

Rn I ¢;:0 = 1; (2.8a) 

(ii) on the entrance surface 

( o~B - 4 i B , ~ R B ) , ; : , ~  0 ~  = 0. (2.8b) 

Thus, the boundary-value problem (2.1), (2.4), (2.5), 
reduces to finding the Riemann function. 

We shall construct the Riemann function in the form 
of the contour integral connected with the integral 
representation of the confluent hypergeometric function 
(Erdelyi, 1953) 

t" exp (4iBm' h t) 
k~(~;  ~,) = ~ d tQ(~  - t) , (2.9) 

F(1 +v) 

where v = iehOh/4B , F(1 + V) is the gamma function; 
Q(t) is an unknown function, which has, in general, a 
branching at the point t = 0 of the type 

Q(t)l t_.o~t -l-~. 

The integration contour in (2.9) is a double loop, which 
begins at some point on the real axis, t., between the 
values 0 and ~, goes counter-clockwise round the point 
t = ~[ and round the point t = 0, goes back to t .  and 
goes round the points ~ and 0 once again but clock- 
wise and ends at the initial point, for which arg t.  = 
arg(~ - t.) = 0 by definition (Fig. 2). 

Notice that the formal solution (2.9) satisfies (2.7) 
identically. Expanding the unknown function Q(t) in a 
Taylor series 

~o dm(4iB)m/2 
Q(t)= t - ' - v  ~. 

m=0 F(m + v) 
t m 

and finding the coefficients d m from the recurrence 
relations which follow from (2.8), we get the Riemann 
function in the form of an infinite functional series of 
the confluent hypergeometric functions 

RB(~,; ~) 

oo 

m=O 

(4iB) m 
d2m (2m)t ,F,(1 + v, 2m + 1; 4iBm' o ~'h). 

However, the use of this solution for the physical 
investigation of the problem, (2.1), (2.4), (2.5), en- 
counters significant difficulties. The point is that all the 
terms of the above series, as is easy to prove, beginning 
from the second one, are of the same order in powers of 
the USG parameter B. 

In order to overcome this difficulty we write down 
the expression (2.6) for the amplitude of the diffracted 
wave as the convolution of the incident wave Eo(s' h, s'h) 
multiplied by exp(--2iBs'h 2) and the function which will 
be called the Green-Riemann function, 

Rn(s'o,s'h; s o, Sh) = exp (4iBs h ~) RB(~; ~) 0(--~) 
(2.10) 

multiplied by the phase factor 

exp[ 2iB(s 2 - s~,2)l. 

The boundary conditions for the Green-Riemann 
function take the form [cf. (2.8)] 

Rnl~;=s0 = 1 (2.1 la) 

t~+, o., ~', o-) 

Fig. 2. The integration contour in (2.9). 
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 ,)lso s Os, ° - -  4iBs'n = ~ ( s  o - -  S'o). (2.1 lb) 

Now, taking into account (2.6) and (2.9)-(2.11) and 
making use of the direct and reverse Laplace trans- 
formations, we get after direct calculation 

Eh(Sh, Sh) exp (2 iBs~)  
oo 

• t 2  p r = ioh f d s '  h exp ( - 2 t B s  h ) Eo(Sh,S ~ 
o 

x e x p [ 2 i B ( s ~ -  S'h2)]RB(s'h,S'h; Sh,Sh) (2.12) 

? P° RB(So,  Sh, So, Sh) = e x p [ 2 i B ~ ( s  h + s'n)] 
Re Po+iOo ( ' ~ )  1/2 1 y 

x dp exp [ - p ~  + p ( ~  - ~,)/21 
2n/ RePo--/oo 

D_l_v{(i/4B)U2[ p -- 2iB(~ -- dj~)] } 
x D_v{(i/4B)X/2[p+ 2iB(~-~I,)]} , (2.13) 

where D(t) is the Weber (parabolic cylinder) function. 
Notice that the Green-Riemann function (2.13) has 

a physical meaning only if s o = s h and describes the 
diffracted wave field on the entrance surface z = 0 in 
the case of an X-ray point source, i.e. ~t01nc)(s h) = 
J(Sh), as follows immediately from (2.12). 

It should be emphasized that the Laplace represen- 
tation idea of the kind in (2.13) can effectively be used 
for constructing the asymptotic Green-Riemann func- 
tions of interest to us for a wide range of parameters of 
the problem. This question will be discussed in detail 
below. Before proceeding to this, however, we shall find 
the proper Green functions (influence functions) of the 
problem. They are necessary if one is ever to describe 
the wave-field propagation inside a crystal. 

Then, inserting (2.6) into the second term of the 
right-hand side of (3.1) and utilizing the equality 

OR L 

Os'o 
- -  4 i B s '  h R L = - 4 i v B ( s  h - s~) 

x exp [4iBsh(Sto -- So)] 

X iFl[1 + v, 2; 4iB(So--Sto)(Sh--SPh)], 

which follows from (3.2) and from the functional 
relations for the confluent hypergeometric functions, we 
write down (3.1) in the form 

Eh(SO,$h) = iO h f ds '  h e x p  (--4iBs'h2)  Eo(S'h,S'n) 
O P I  

X e x p [ 4 i B s  h ( s '  h - -  So)] 

× 1Fl[1 + V, 1; 4 i B ( S o - - S ~ ) ( S h - - S ~ ) ]  

+ 4 e  h vB  Y ds'o(S h - s'o) exp [4 iBSh(S '  o - -  So)] 
OP~ 

x 1F1[ 1 + v, 2; 4 i B ( s  o - s'o)(s h - s~)] 

x f ds~' exp ( - -4 iBs 'h  '2) E o ( s '  h',s'h' ) 
OP~(s;,s;) 

x e x p [ 4 i B s ' o ( s '  h' - S'O)]I~B(S' o - -  S'h'; S ~ -  S'k' ). (3.3) 

Bearing in mind that we are trying to find the Green 
function, which means that the amplitude of the 
diffracted wave (3.3) can be expressed as a convolu- 
tion of the kind 

oo 

Eh(So, Sh) = i¢7 h f ds~ exp (--4iBSrh 2) Eo(S'h,S'h) 
- -00  

× c,.ho(So, S,,; S'h,S'h), (3.4) 

3. The wave field inside a crystal. The Green functions 

According to the Riemann method the amplitude of the 
diffracted wave at an arbitrary observation point (So, Sh) 
in a crystal is determined by the integral relation 

Eh(SO,$h) = iah ~ dsrh 
OP~ 

× exp ( - 4 t B s  h "  ,2) Eo(Sh,Sh ) ,  , RL(Sh,Sh , ,  , .  So, Sh) 

+ f dsr°Eh(Sr°'sP°) \ cgs---~o s'.=s; 
OP~ 

(3.1) 
? ? ,  where RL(So,Sh,  So,Sh) is the Green function in the case 

of X-ray Laue diffraction and is equal to 

RL(S'o,S'h; So, S h) = e x p [ 4 i B S h ( S '  o - -  So)] 

X 1Fl[ 1 + v, l; 4 i B ( s  o - -  S'o) (s  h --  s~)]. (3.2) 

we apply the integral Laplace transformation to both 
the sides of (3.3) 

.~  [exp ( 2 i B s  o t) Eh(So, t); p] 

= itr h S {exp [ - 2 i B t ( t  + s o - -  sh)] E o ( t , t ) ; p }  

x [ t { e x p [ - - 2 i B t ( t  + s o - Sh)] 

X iF~[ 1 + V, 1 ; 4 i B t ( t  + s o - -  Sh)]; p } 

- -  4 i v B S  {exp [ - - 2 i B t ( t  + s o --  Sh)] l~ s ( t ; t ) ;  p }  

X Y {t exp [ - - 2 i B t ( t  + s o - -  Sh)] 

X ~F~[1 + v, 2; 4 i B t ( t  + s o - Sh)] ;p}] .  (3.5) 

The Laplace transforms of the expressions including 
the confluent hypergeometric functions, 1F1, in the 
right-hand side of (3.5) can be calculated exactly (see 
Appendix 1). Therefore, we have 
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_~ {exp [ - - 2 i B t ( t  + s o --  Sh)] 

X 1Fl[1 + V, 1; 4 i B t ( t  + s o --  $h) l ;P}  

= e x p ( - - i z r v / 2 ) ( i / 4 B )  '/2 exp[ p ( s  o --  sh)/2] 

× D { ( - - i / 4 B ) ~ / 2 [ p  + 2 i B ( s  o --  Sh)]} 

x D _ l _ ~ { ( i / 4 B ) l / 2 [ p  - 2 i B ( s  o --  sh)]} 

A a { e x p [ - - 2 i B t ( t  + s o - Sh)] 

x qF~[1  + v, 2; 4 i B t ( t  + s o - -  $h) l ;P}  

1 
= exp ( - i ~ / 2 )  ~ exp [p(s 0 - Sh)/2l 

x D _ l + , { ( - - i / 4 B ) l / 2 [ p  + 2 i B ( s  o --  Sh)]} 

X D _ l _ , { ( i / 4 B ) l / 2 [ p  --  2 i B ( s  o --  Sh)] }. (3•6) 

Then, taking into account (2.13), (3.6) and the 
identity for the Weber functions, 

D _ , ( t )  D (it)  + i v D _ , _ , ( t )  D_, + ~(it) = exp ( inv /2) ,  

which is also proved in Appendix 1, one finds from 
(3.5) 

d [exp ( 2 i B s  o t) Eh($O, t); p] = ioh 

x d {exp [ - - 2 i B t ( t  + s o - $ h ) ]  Eo(t ,  t);p} 

x ( i / 4 B )  1/2 exp[p(s 0 -- Sh)/2] 

D _ I _ . I ( i / 4 B ) ~ / z [  p --  2 i B ( s  o --  Sh)] } 
X (3.7) 

D _ ~ l ( i / 4 B ) V Z [  p + 2 i B ( s  o --  sn)l} ' 

where d { e x p [ - - 2 i B t ( t  + s o - Sh) lEo( t , t ) ;  p }  is the 
Laplace transform of the incident wave Eo(t , t )  with a 
phase shift corresponding to the displacement field 
(2.5). 

Finally, the reverse Laplace transformation turns 
(3.7) into (3.4) with the Green function 

GB, hO(SO, Sh; $rO, SPh) = exp[- -2 iB~o(S  h + s~)] 
{ i t l / 2  1 Rep°+i°°[. 

x t4--~} 2-"m" i dp exptpdj h + P(<o - ¢h)/2] 
Re Po--ieo 

D_ l_p{ ( i /4B)V2[  p --  2 i B ( ~  --  ~h)l} 
x (3.8) 

D _ , I  ( i /4B)I/2[ P + 2iB(~o- ~h)l} 

The analogous procedure for finding the Green 
function describing the transmitted wave is, in principle, 
feasible. But there is no necessity to carry it out. 

Consider the second equation of the set (2.1): 

Eo(SO, Sh) = --iG-h I exp(4iBSoSh) 
¢~Eh($0,8 h) 

OSh 

from which follows 

e x p ( - 4 i B s  o Sh) EO(So,Sh) 
O0 

? t • ? t = ~ ds~ exp(--4iBSrh2)Eo(Sh,Sh)GB, oo(SO,Sh, Sh,Sh), 
-oo (3.9) 

OGB,ho(So, S,; S'o,S'~) 
' ' . ( 3 . 1 0 )  GB' OO(SO'Sh'~ $0'$h) : ~$h 

Now, keeping in mind (3.8) and the known recur- 
rence relation for the Weber functions, we get 

GB, oo(So, Sh; S~o, Srh)=exp[--2iB~o(S h + S~)] 
Re Po+iOo 

1 f x 2--~ dp exp [P~h + P(~o --  ~h)/2] 
ReP0--1oo 

D - ~ { ( i / 4 B ) I / 2 [ P -  2iB(~0- ~h)]} 
X 

D _ , I ( i / 4 B ) I / 2 t p  + 2iB(~0-- ~h)l} " 
(3.11) 

Notice that the Green function GB.oo(So,Sh; S'o,S'h) 
becomes on the entrance surface 

GB,oo(Sh,Sh; Sth,Sth) --~ e x p [ - - 2 i B ( s ]  - s~,2)l (~($h -- S~ 

and (3.9) reduces to 

~O(Sh,Sh) : ~°(01nc)(Sh) 

as it must do. 
The formulae (3.4), (3.9), (3.8), and (3.11) constitute 

the integral formulation of the Huygens-Fresnel 
principle for the determination of the exact wave field in 
the case of Bragg dynamical diffraction of X-rays from 
a crystal with USG and give a complete solution to the 
problem under consideration. 

It is interesting that a comparison of (3.8) with (2.13) 
makes apparent the symmetry relation between the 
Green function GB,hO(So,Sh, Sto,S~h) and the Green- 
Riemann function Rs(s~,S'h; So,Sh). Indeed they are 
converted to one another by the interchange of the co- 
ordinates of the X-ray point source (S'o,S'h) and of the 
observation point (So,Sh). There is no accidental 
circumstance. Physically this is connected with the fact 
that the Green-Riemann function (2.13) is nothing but 
the Green function of the problem for the reciprocal 
geometry of the Bragg diffraction of X-rays by the 
crystal with a displacement field hu = 4 B s o s  h sym- 
metrical with respect to the substitution s o = - s h (see 
Appendix II for details)• 
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In the case of the 'dynamically transparent' crystal, 
when the inequality, 

occurs, it is possible to put Re v = 0 in (3.8). Then the 
change of the sign of B is equivalent to the transition to 
the complex conjugate expression for the Green 
function. In this case the Friedel law is valid for the 
integral reflecting power from such a crystal. 

In the opposite case of the 'dynamically absorbing' 
crystal, the Green function (3.8) essentially depends on 
the sign of B and the Friedel law does not hold. 

It should be mentioned that for a crystal deformed 
by USG with B = 0 but A ~ 0, C ¢ 0 (so-called case of 
the net plane 'fan') the Green function (3.8) and (3.11) 
can readily be shown to be equivalent, apart from a 
phase factor, to the corresponding expressions for a 
perfect crystal (Chukhovskii, Gabrielyan & Petrashen', 
1976). Furthermore, the integral reflecting power is 
equal to 

oo da  
~'ht = 41 Oh 12 f 

-oo Iqo + (q2o-- 4ah a-h )1hI2' 

q 0 = ~  + lYhl l '  

in this case, i.e. to the integral reflecting power of a 
perfect semi-infinite crystal (see, e.g., Pinsker, 1974). 

Now we shall show that the structure of the Green 
function (3.8) corresponds to waveguide propagation 
of the wave field in the bulk of a crystal with USG. The 
consideration below is directly similar to the analysis of 
the dynamical boundary-value problem of internal 
sphere oscillations (Smirnov, 1958). 

Let us utilize the known functional relation for the 
Weber functions, 

(27t) 1/2 
D_,(t) = exp(--inv) D_,(--t) 4 -F(v) 

× exp[  2 (1--  v)] D_,+~(--it), (3.12) 

[the case of B > 0 is considered; ifB < 0 it is necessary 
to utilize the relation linking the functions D_v(t), 
D_v(--t) and D_ 1 +,,(it)]. 

It is easy to see that on the integration line p -= Re Po 
-- iRe q in (3.8) 

O-l+v{-i(i /4B)l/2[P + 2iB(~o -- ~h)]} 

D-,,{(--i/4B)I/2[P + 2iB(?,o -- ~h)]} 

does not exceed some number less than unity, provided 
that the integration variable --Req is greater than 

2B(~ -- ~h) and the parameter ReP0 is large enough. 
Taking this into account, the integrand in (3.8) can be 
expanded as a functional series of the kind 

(ilI/21 
GB,ho(So, Sh; S'o,S'h) = exp[-2iB~o(S h + s~)l ~-~] 2---m" 

Re po+ 2/B(~o--~0 

x f dp exp [p~ h + P(~o - -  ~ h ) / 2 ]  
4 #  

RePo-- ioo 

O_,_.(p,) V [ (2~) vz \"-1 
× /_.., \ - - i - ~ ]  

D-,,(P9 . : ,  

x exp i - -= - (n -  1) 

Re Po+ iOo 

x f dp exp (P~h + P(~O -- ~h)/2) 
Re po+ 2/B(~ o- ~h) 

X D - I - v ( - - P l )  [D- l+-v( - - iP~]  n-1 

D_v(--p2 ) h D_,,(--p2) d 

×[I+ (2ZC I/2 (iZ~ {I D"(--iPl),] 
F(1 )+ v) exp +2}) }' D_l_v( -P l ) l  

P l . 2  = ( i /4B)  1,2[ P + 2iB(~o -- ~h)]" ( 3 . 1 3 )  

The fact of principal importance is that the :finite 
number of terms on the right-hand side of (3.13) differs 
from zero for an observation point fixed inside a 
crystal. Indeed, by use of the standard asymptotic re- 
presentations of the Weber functions, the integral cor- 
responding to nth term of the sum on the right-hand 
side of (3.13) takes the form 

where 

: . (P,  ¢h, ¢O-- V)= 

RePo+ioo 

f dp , :~-n(P,~h,~O--~h,V) ,  
RePo--ioo 

0 for - Re q < 2B(~0 - ~h) 
p]-l-~p~(2,,- I)-,,+ l 

I n - - 1  2\ 
X exp~P~h + ~ P2} 

(2~z)u 2 
X 1 + F(V) exp(izt'v)P~V+l 

x exp (p~/2)] 

for --Re q > 2B(~ 0 - ~h). 
(3.14) 

From (3.14) it follows immediately that if the 
condition, 

(1 - -n )  (1 - -n )  (--Re q) 
Ch + + < o ,  

2 2 2B 
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is satisfied, the terms of the sum in (3.13) beginning 
from the number n = 2 + E[~h/(~ o -- ~h)] vanish. The 
remaining terms describe the waves undergoing con- 
sequently 1, 2, . . . ,  (n - 1)-times repeated reflections 
from the lower wall of the 'waveguide' inside a crystal. 

For the physical analysis of the solution (3.4) there is 
the alternative approach based on the Laplace trans- 
forms of the Green functions. It may be fruitful, in 
particular, to calculate the diffracted wave amplitude 
(3.4). 

With (3.7) in mind, the solution (3.4) can be written 
in the form of the Laplace integral: 

Eh(So, Sh) = i~7 h exp [--iB(s o + Sh) 2 + 2iBs 2] 

( ili/2 1 RePo+i°° 
x\~--B] ~ i  f dpexp[psh+P(S°--Sa)/2] 

Re Po--ioo 

x S [exp(--2iBt 2) Eo(t,t); p] 

D ~ ,,{(i/4B)l/2[p--4iB(so - Sh)l} 
x - - (3.15) 

D_~[(i/4B)V2p] 

Further, we shall suppose that the poles of 
c./qexp(--2iBt 2) E0(t,t); p] do not coincide with zeros of 
the Weber function D_v[v/i/4Bp]. Then we get 

Eh(So, S h) = itr h exp [--iB(s o + Sh) 2 + 2iBs 21 

( 

x ~E(h*)(So, Sh) + Y. exp[pjs h + &(s o -  Sh)/2] 

L 
J 

x .~ [exp (--2iBt2) Eo(t,t);p] 

D_ ,_~{ (i/4B)V2[ pj - 4iB(s o -- sh)l } /  

X f d D :(i/4B)l'~p A 
dpj - 

(3.16) 

where the function Eth*)(So,Sa) corresponds to the sum of 
the residues at the poles of ~:[exp(-2iBt 2) Eo(t,t); p]. 
The series in the terms of the residues of the Laplace 
transform of the Green function at the points 
D_,[v/i/4B p j] = 0 represents by itself the superposi- 
tion of the real oscillations of the wave field in the 
crystal in question. 

Notice that the situation is of physical interest when 
the pole (poles) of d[exp(--2iBt2)Eo(t,t); p] coincides 
(coincide) with the zero (zeros) of the Weber function 
D_,[v/i/4B p]. In this case the 'resonance' spatial 
harmonics, including the term linear in the coordinate 
s h, appear on the right-hand side of (3.16). 

4. The asymptotic Green functions 

In physical applications the asymptotic Green func- 
tions in powers of the eikonal functions are certain to 
be very effective. In order to obtain adequate 
asymptotes we shall proceed from the Laplace integral 
representations of the Green functions (3.8) and (3.11). 

In the case of large USG parameter IBI >> lehe_hl 
the X-ray dynamical scattering is suppressed and the 
incident wave undergoes kinematical diffraction from 
the extremely deformed crystal. Then one can utilize 
the standard asymptotic representations for the Weber 
functions included in the Laplace transforms of the 
Green functions (3.8), (3.11). As a result, the latter 
acquire the form 

( i t v 2 1  
GB,ho(So, Sh; S'o,S' h) = expt--2/B~Jo(S h + s~,)] \ ~ ]  2-"~ 

Re P0+ i ~  

x f dp exp(p~a)p-{a-Vp~ 
d 

RePo--ioo 

x (-- 1)k F(k 
( (2701/2 / 2k 

+9 ,-SS  , 

(27/;) 1/2 
+ e(1 + v, argp 1) - -  exp (/01.,.i/- 1 2 / ' ) ~  r~l+2v 

F(1 +v) 

(2z0 '/2 (p2/2)p2 } _e(v ,  a r g p 2 ) ~ _ e x  p 2 -1+2~ 

GB. oo(So, Sh; S'o,S'h) = exp t--2iB~o (S h + s~)] 

(4.1) 

1 Re P°+l°° I -  

X 2---~ } dpexp(P~h)P-fvP~ 
Re P0--ioo 

. (2•) 1/2 
x 1 + e(v, a rgp0 ~ exp(p~/2)p7 l+2v 

"(2n)v2 ,}  
-- e(v, argp2)- ~ exp(pl/2)p~ -'+2 . (4.2) 

The jump coefficients, t(1 + v, arg p) and t(v, arg p) 
determine the behaviour of the asymptotic expansions 
of D_l_o(p) and D ~  (p) in adjacent sectors of argp 
(the Stokes phenomenon) and are determined as 

(_ for largpl < zd4 

e(v, argp) = exp(--inv) for zd4 < argp < 5zd4 

[-- exp(izrv) for--5~r/4 < argp <--7r/4. 

The asymptotes (4.1), (4.2) describe the Born 
(kinematical) approximation of the Green functions in 
accordance with the terminology of the scattering 
theory. When IBI increases, (4.1)and (4.2)tend to the 



F. N. CHUKHOVSKII,  K. T. GABRIELYAN AND P. V. PETRASHEN' 617 

'kinematical' Green functions: 

G~.,o(So, S~; S'o,S'~) 
= exp[--4iBs'h(S o -- s~)l O(s h -- S'k) (4.3) 

G~.oo(So, Sh; S'O,S'h) 
= e x p [ - 2 i B ( s  o -- S'o)(S h + s~,)] 6(s h -- S'h) (4.4) 

and in the limit of I BI ~ ~ the integrated intensity of 
the diffracted wave is equal to the corresponding 
(kinematical) value for an ideal-mosaic crystal 

~ ( I B I  oo) 2Y01yhl I O'hl 2 
--, = (4.5) 

K 2 Im Z0(70 + lyhl)" 

For the slightly deformed crystal, when I BI ,~ 
laha_hl, in order to construct the quasi-classical 
expansion of the Green function (3.8) we shall use the 
Darwin method (see, e.g., Miller, 1955). The direct 
calculations yield the following asymptotic representa- 
tion of the Weber function of interest to us 

(2~) TM 
D ~_.(p)= [F(1 + v)] a/2 exp[vx+"(p2)l {exp[--0,+v(p)] 

+ e(1 + v, argp) exp[01+,,(p)]} 
(2~) TM 

D_.(p) = [ F(v)] u2 exp Iv (p2)] {exp [--0 (p)] 

+ t(v, arg p) exp [O(p)]}. (4.6) 

Here the functions O~+.(p), O.(p) and v~+.(p2), 
v.(p 2) have the forms 

01+,,(p) = ¼p(p2 + 4V)1/2 + (V + 9 In 
2V 1/2 

~ .  dl+v'3s(P) 
+ @2 + 4p)3s/2 

s=l 
p + (t9 2 "1- 4V) 1/2 

O.(p)  = k p ( p 2  + 4v)1/2 + (v-½)In  
2vl/2 

~s~ 1 dv'3s(P) 
+ (p2 + 4v)3s/2 

p + (p2 + 4v)'" 

~ A  + ~.s(p 2) 
v'+.  (p2) = -¼In (p2 + 4v) + (p2 + 4v)s+, 

= 

s~l L 's(p2)  (4.7) v ( p  2) =--¼ In (p2 + 4v) + (p2 + 4v)S+l 
= 

The functions dl+~,as; dv, a~; fl+~,s; f~,~ can be 
calculated by use of the Darwin procedure (Miller, 
1955). Therefore the first and the second d~+~,a; 
d,,,3s;fl+,,,3~;f,,3 s functions are equal to 

dl+v'3 : d"3 = - ~v - v , 

dl+v,6 : _dr, 6 = ;~p (p2 + 4v)1/2 

f l+, . l  = --f~.l = --½, f l+ , ,2  =f~.2 = ~p2. 

As is seen from (4.6)-(4.7) [cf. the derivation of 
(3.13)] the spatial harmonics Re q (p = ReP0 -- i Re q) 
of the wave packets (3.8) and (3.11) are sharply 
differentiated from one another in terms of the physical 
nature of their propagation inside a crystal. Par- 
ticularly, harmonics with Re(qB) < 0 move in the 
proper 'waveguide' channels, whereas those with 
Re(qB) > 0 are transmitted in the bulk of the crystal, 
being damped exponentially. 

Now, if one neglects n-multiple reflections of spatial 
harmonics Re(qB) < 0 from the lower walls of the 
appropriate 'waveguides', beginning from n = 2, the 
Green function (3.8) can be written as 

GS.ho(So, Sh; S~,S~) = exp[--2 iB~o(S  h + s~)] (o hoT_h) -t/2 
Re Po+ i ~ 

1 f x 27ri dp exp[p~ h + P(~o-  ~h)/2] 
RePo--ioo 

× exp[vl+v(p 2) -- v v ( p ~ -  01+~(pl) + 0~(P2)] 

× {1 + e(1 + v, argp~) exp[20~+,(p~)] 

-- e (v, arg P2) exp [20ff, P2)] }. (4.8) 

The investigation of the problem based on the above 
quasi-classical asymptotic Green function will be 
carried out in a further paper. The particular case of X- 
ray Bragg diffraction by the crystal with the 'fan' of the 
net planes, when B = 0 but A :/: 0, C ~ 0, was treated 
by Chukhovskii, Gabrielyan & Petrashen' (1976) who 
took into account the formation of the caustic for the 
ray trajectories. 

Notice that the formula (4.8) can readily be shown to 
be equivalent to (4.1) for large IBI ~ Itrhtr_hl. This in 
turn means that the quasi-classical Green function (4.8) 
can be used in physical applications for any USG. 

5. The exact solution of the Taupin problem 

Taupin (1964) treated numerically the problem of X- 
ray incident plane-wave Bragg diffraction from a thick 
(semi-infinite) crystal, the lattice spacing being a linear 
function of the crystal depth, when the displacement 
field hu(r) is given by 

hu(r) = - -  2 n z  2. (5.1) 

The dependence in (5.1) is a particular form of (2.5) 
when 

,4 = - B = C .  (5.2) 

The boundary conditions of the problem become 
[Taupin, 1964; c f  (2.4)] 

Yo(X,Z)lz=o = 1, gh (X , z ) l z=~  = 0. (5.3) 

The previous study makes it possible to find the 
exact analytical solution of the Taupin problem. With 
(5.2) and (5.3) in mind, it is not difficult to see that the 



618 THE DYNAMICAL THEORY OF X-RAY BRAGG DIFFRACTION 

appropriate expressions for the diffracted and trans- 
mitted wave amplitudes are nothing but the exact 
Laplace transforms of the Green functions (3.8) and 
(3.11), 

~h($0,Sh) : i¢7 h exp i -~ (s o -- s h) ~ 1 
Yo 

+ iB(s o -- Sh) z] 

( i ) X/Z D_x_~{-i(i/4B)V2[qo + 4B(so-  Sh)]} 
+ --~ D_~[_i(i/4B)l/z q,] 

g (x0 Xo-a  
$'o(So,S~) = exp i ~- (s o -- s h) ~o Irnl / 

-- iB(s°-  $h)2 / 

D_,,I--i(i/4B)l/2[qo + 4B(s o -- Sh)]} 
X 

D-~[--i(i/4B) 1/2 qo] 

(5.4) 

(5.5) 

The wave fields (5.4) and (5.5) do not depend on the 
coordinate along the crystal surface, as one would 
expect from general speculation. The ratio gh/g0 
depends on, accurate to within a phase factor, the 
variable qo + 4B(s0 -- Sh) only. This result was first ob- 
tained by Taupin (1964) and he used it effectively for 
the numerical calculation of the rocking curve. 

The structure of the solutions (5.4) and (5.5) exhibits 
clearly the 'waveguide' nature of the Bragg diffraction 
of X-rays by a crystal with USG, as was pointed out 
above under the discussion of the general solution of 
the problem, (3.4), (3.8), (3.9), (3.11). Taking into 
account (4.8) [cf. (3.13)], one can prove that the spatial 
harmonics Re q0 with Re(qo B) < 0 undergo successive 
multiple reflections while those with Re(qoB) > 0 are 
damped exponentially in the bulk of the crystal. As an 

X* X 

Fig. 3. Ray trajectories in Bragg case diffraction: 

X. = {I Reqol -- [(Req0) 2 -- 41o" h O_hl ]1/2}/81BI 
z. = (IReq01 -- 21a h a_hl t/2)/41BI. 

example, Fig. 3 shows schematically several energy 
flow trajectories. 

The angular distribution of the diffracted intensity 
has the form 

~h(qO) : I~h(Sh,$h) [2 

[Oh 12 

41BI 

D_l_~[-i(i/4B) 1/2 qo] 12 

D-~[-i(i/4B) l/z q0] 
(5.6) 

and, as a function of parameters included, is essentially 
determined by the variable of the kind, 

q~ -- 4o" h O'h. (5.7) 

Consider the case of IBI ,~ laha_hl. The behaviour 
of the rocking curve (5.6) is sharply different in the 
regions Re(q o B) > 0 and Re(qoB ) < 0. On the side of 
Re(qo B) > 0 the c u r v e  ~h(qo) coincides, accurately to 
within a magnitude of order 

Im ( q ~ _  4aha_h)l/2 .~ 1 

with the corresponding function for a perfect crystal 

~h(qO) ~ I _ 2¢7h I 2 
qo + (qo 2 - -  4~h  O'-h) 1/2 (5.8) 

In the region where Re(q0B ) < 0 it is necessary to 
take into account the X-ray 'waveguide' effect. 
Restricting ourselves to dealing with the single reflec- 
tion of the wave field from the lower wall of the 
'waveguide', we find 

~h(q0) ~ I -- 2an 
I qo + (qo 2 -- 4Oh O'-h) 1/2 

x{1 ,(q0  4°h°  /1'2 
o" h (7_ h / 

× e x p ( -  iq° 40hCT_h)l/2)l]2 (5.9) ~-~ (qo 2 - 

As can be seen, (5.9) oscillates, decreasing simul- 
taneously as 

Im qo ]1/2 } 
exp t 2 - ~  [(Re qo) z -- 41a h a_hl 

The oscillation period is approximately equal to 

4tBI 

27/'[(Re qo)2 --  41a h a_hl] 1/2" (5.10) 

It should be mentioned that the angular range of the 
X-ray extinction where the incident beam is totally 
reflected is rather insensitive to the USG parameter B in 
the area where IBI ,~ lahO_h I and is practically the 
same as for a perfect crystal. 
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In the case of I BI >> Jab a_hl to analyse (5.6) it is 
necessary to use (4.1). The general type of the rocking 
curve is conserved. At the same time the position of 
max {'~h(q0)} shifts proportional to ~1BI1/2 and the 
maximum itself versus B decreases, as 

m a x  [ , ~ h ( q 0 ) ]  "0 IBI-k (5.11) 
The oscillation period increases linear with I BI. 

Notice that the exponential decrease of the oscil- 
lating part of (5.9) is connected with the absorption of 
the wave passing along an additional path in the 
crystal, due to its reflection from the lower wall of the 
waveguide, with respect to the directly diffracted wave. 
Because of this, the twofold and successive multiple 
reflections of the wave field do not practically affect the 
rocking curve (5.9). Besides, for the IBI >> Io n o nl the 
crystal depth, (s o - Sh) ~ IB1-1 IOha_hl, where the X- 
ray total reflection occurs, is much smaller than the 
extinction distance A and now the angle range IReq01 
< 2lah a_hl 1/2 can no longer be distinguished. 

A P P E N D I X  I 

At this point we shall derive (i) the formulae (3.6) for 
the Laplace transforms of the expressions including the 
confluent hypergeometric functions; (ii) the identity for 
the Weber functions, which was used in order to obtain 
(3.7) in the basic text. 

(i) Let us consider the known integral representation of 
the confluent hypergeometric function (Erdelyi, 1953): 

r(c) 
1Fl(a,e; 2t) = F(a)F(e -a) 

t 

x t 1-~ f dx exp (2x) x a- l(t - x) e -a -  1. 
o 

(AI.1) 

This is correct under the conditions 

Re c > Re a > 0. (AI.2) 

Now, assuming the particular value of the param- 
eter, 

2~ = 4 iB( t  + s o -- Sh), (AI.3) 

one writes down the integral (AI. 1) as the convolution 

t e- 1 exp [ - 2 i B t ( t  + s o -- Sh)] 

× iF~[a,c; 4 iBt ( t  + s o -- Sh)] 

r(c) i 
F(a)  F(c  -- a) d x  exp [2 iBx(x  + s o - Sh)] X a -  1 

0 

× e x p [ - - 2 i B ( t - x ) ( t - x  + S o - - S h ) ] ( t - - x )  c -a - l .  

(AI.4) 

Then the Laplace transformation of (AI.4) is readily 
performed on the basis of the tabulated Laplace 
transforms. As a result, one has 

S { t c- 1 exp [ - 2 i B t ( t  + s o - Sh)] 

× 1Fl[a,c; 4 iBt ( t  + So--Sh)];p}  

= exp (--ir~t/2) F(c)  ( - -  ~ )  c/2 

× exp[p(s o - s n ) / Z ] D _ , { ( i / 4 B ) ' / Z [ p -  2 iB(s  o -- sn)l} 

× D ~ _ c { ( - - i / 4 B ) m [ p  + 2iB(s  o -- Sh)]}. (AI.5) 

(AI.5) gives formulae (3.6) in the text, if one puts, 
respectively, 

a = 1 + v, c = 1 (AI.6) 
a = l + v ,  c = 2 .  

The restrictions (AI.2) imposes on the parameters a,c 
can be removed either by means of the analytical 
continuation principle or by the introduction of contour 
integrals, as was done in § 2 when the Riemann func- 
tion was constructed. Thus (3.6) are valid for arbitrary 
values of the USG parameter B and of the complex 
dynamical coefficients O'h, 0"_ h. 

(ii) In order to prove the identity for the Weber func- 
tions, 

D_v(t) D (it) + ivD_,+,( i t )  D _ , _ , ( t )  = exp(iztv/2),  

(AI.7) 

it is easiest to differentiate the left-hand side of (AI.7) 
with respect to t and, by use of the known functional 
relations for the Weber functions (Miller, 1955), 

d 
- -  D (t) + ½ t D , ( t ) -  v D _ l + v ( t ) =  0 
dt 

d 
D ( t ) - ½ t D , ( t )  + D,+,(t)  = O, 

one finds that the derivative of the left-hand side of 
(AI.7) is identically equal to zero. To calculate the 
constant value in the fight-hand side of (.41.7) the 
Weber functions at t = 0 can be used: 

D(O) - 
2v/2 ~1/2 

In this case, (AI.7) is obtained, as was to be shown. 
Combining (3.6) and (AI.7), we get the formulae 

(3.7), and (3.8). 
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A P P E N D I X  II 

Here we treat the symmetry relation connecting the 
Green function Gn.ho(SoN,ShN; So~ShM) and the Green- 
Riemann function Rs(sou, S~u; SoN,ShN). 

The Green function GB.hO(So,Sh; SoM,S~M), describing 
the X-ray diffracted wave in a crystal with any dis- 
placement field hu(r), satisfies the following equation as 
a function of observation point coordinates (so, s ~) (see, 
e.g., Courant, 1962) 

¢~2 GB h0 tg(hu) c3G B hO 
+ i - -  ' + tThtT-h O(So-  Sh)GB.hO 

~S 0 ~S h ~S 0 ~S h 

= J(s o -- Sou ) t~(s h -- Shu ). (AII. 1) 

According to the causality principle, we define GB,ho 
as the retarded Green function: 

(AII.2) 

GB,hO($O, Sh; SoM~Shbl) 

is equal to zero for s o >_ SOM, S h >_ ShM 

and differs from zero for s o < Sou, s h < s ~ .  

Then the Green functions should obey the mixed 
boundary conditions 

GS, hO ] = exp[ihU(Son, S ~ )  -- ihU(So, ShM )] 
I Sh=Sh.M 

tgGB ho [ 
--n ~ [ = exp[ihu(SoM'Sh) --ihU(Sh'Sh)] ~(sh - -  shivl)" 

so=s h 
(al l .3)  

On the other hand, the Green-Riemann function 
Rn(So,Sh; SoN~ShN ) is, apart from a phase factor, nothing 
but the Green function ~B.ho(So,Sh; SoN, S~¢) of the 
problem in the reciprocal geometry of the diffraction: 

RS(SO, Sh', SON, Sh~) = e x p  [l~llU(So,Sh) --  ihU(SoN, ShN)] 

× OB, hO(SO, Sh'~ SON~ShN ). (A.II.4) 

The latter is defined as the solution of the equation 

h0 
+ i - -  - - - = - '  + oh O_h O(so - -  sh)  B,ho 

~s o ~gSh ~gS h tgSo 

= J(S  o - -  SON) JS h -- S ~ )  (AII.5) 

with the boundary conditions 

~,nol~o=~o~ = exp [/'hU(SoN, ShN) - -  I~llH(SoN, Sh)] 

tg~'h° 1' = -- exp [ ihu(so, S~v) -- ihu(so, So)] 
~S o I So=S, 

× ~ ( S o -  SON). (AII.6) 

Now, if one goes over to the 'proper' coordinate 
system for X-ray Bragg diffraction in the reciprocal 

geometry, namely: to the system ~oOgh, related to the 
initial one by 

SO -~- --S h 

Sh = --So, (AII.7) 

(AII.5) and (A II.6) can be written in the form 

------------~' + i 
C~So ~gSh 8So ~Sh 

+ ah a-h O(SO -- Sh) aB,hO : ¢~(S0 + ShN) (~(~h + SON) 
(AII.8) 

GB, hO[ -s'~ =son: exp [ ihU(So~ShN) -- ihU(SoN,--.~O)] 

cgGB.hO[ _ e x p  [ t . ' b u ( _ g ' h , S ~  ) _ ihu(--Sh,--Sh)] 
8~h eo :- ~h 

× J(Sh + SON)" (AII.9) 

From comparison of (AII.1), (AII.3) with (AII.8), 
(AII.9) it follows that for the displacement fields with 

hu(--Sh,-- s0) = hu(s0,sh) (AII.10) 

the Green functions GB.hO, Gn.ho of the problems in the 
standard and the reciprocal geometries are the same 
when SON = -- Sh~ ShN = --SoM, i.e. 

G B, hO(SON, S hN'~ SOM, S hM) 

= GB, hO(--ShN'--SON "~ --ShM'--SOM) (A II. 11) 

if they are written in the same initial coordinate system. 
Finally, in the particular case of the displacement 

field hu = 4Bsos  h, taking into account (AII.4) and 
(AII.11), one can find the exact Green function if the 
Green-Riemann function is constructed [cf. (3.8) and 
(2.13)] by means of the symmetry relation proved 
above: 

GB.ho(SoN, ShN; SoM, ShM) 

= exp (4iBsou Shu -- 4iBSoNShN ) 

X RB(--Shs,--SoN;--S~vl,--SoM ). 
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A Simple Refinement of  Density Distributions o f  Bonding Electrons. 
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From recently refined models of the electron density distribution in the diborane molecule, static density 
sections are calculated and presented as difference densities p(molecule at rest) - p(isolated atoms at rest). 
The sections obtained are compared with corresponding ones derived from quantum-chemical calculations by 
Laws, Stevens and Lipscomb. 

Introduction 

In a preceding paper we described the refinement of two 
models of the electron density distribution in the di- 
borane molecule (Mullen & Hellner, 1977), where the 
X-ray data, collected at 90 K, of Smith & Lipscomb 
(1965) were used. In this paper we shall compare the 
results of our refinement with the results of quantum- 
chemical calculations. For diborane, two SCF cal- 
culations were carried out by Laws, Stevens & 
Lipscomb (1972) (LSL), one with a minimum basis of 
18 Slater-type orbitals (STO's), and one with an 
expanded basis of 68 STO's. Since the quantum- 
chemical calculations of LSL were performed for the 
static density of the equilibrium configuration of the 
molecule, we have transformed our experimentally 
obtained, dynamic densities (i.e. densities including the 
effects of the thermal motions of the atoms) into static 
densities. 

Thermal deconvolution and series termination 

Deconvolution of the dynamic densities for thermal 
smearing can be exactly performed (in the convolution 

approximation), if the temperature factors for all 
density units of the model are known. In actual practice 
we can assume this if the temperature factors were 
determined with the highest possible accuracy of the 
present-day methods (see below). However, the static 
density distribution, obtained by Fourier synthesis with 
structure factors, is disturbed by series-termination 
errors. The peaks that can be observed in difference 
density maps are broadened and reduced in height 
(Scheringer, 1977a). We cannot overcome the effect of 
series termination since the measured data are always 
limited, and thus we cannot reconstruct the true density 
distribution in the molecule, although we could recon- 
struct a more accurate representation of the refined 
density model.* 

* Since the structure factors are calculated from a static density 
model, it is possible to calculate more structure factors than 
correspond to the experimental limit of (sin 0)/2. With such a set of 
structure factors a higher degree of resolution would be suggested 
than is actually given by the diffraction experiment. Certain (large 
gradient) details in the static density maps would then be artifacts. 
Therefore the series should be terminated at the experimental limit 
of (sin 0)/;l (Dietrich & Scheringer, 1978). 


